DISEÑO DE UNIONES DE MADERA REFORZADA

DISEÑO DE UNIONES DE MADERA REFORZADA

César Echavarría

DISEÑO DE UNIONES DE MADERA REFORZADA

Autor:

César Echavarría

Profesor en dedicación exclusiva de la Universidad Nacional de Colombia adscrito a la Escuela de Construcción de la Facultad de Arquitectura Sede Medellín

UNIVERSIDAD NACIONAL DE COLOMBIA – FACULTAD DE ARQUITECTURA Sede Medellín

Comité Editorial:
Armando Joaquín Arteaga Rosero
Carlos Mauricio Bedoya Montoya
Édgar Alonso Meneses Bedoya
Jorge William Montoya Santamaría
Jairo Augusto Solórzano Ariza (Director)

Diseño gráfico interior: María Piedad León Cáceres Diseño de carátula: Rodrigo Lenis León Corrección de textos: Silvia Vallejo Garzón

Primera edición: año 2017 / 200 ejemplares © Facultad de Arquitectura, Universidad Nacional de Colombia © César Echavarría

Los conceptos emitidos por el autor no reflejan la opinión ni comprometen a la Universidad Nacional de Colombia. Se prohíbe la reproducción total o parcial de esta obra por cualquier medio sin la autorización expresa por escrito de la Universidad Nacional de Colombia.

CONTENIDO

PREF	REFACIO		15	
1.	INTR	ODUCO	CIÓN AL DISEÑO DE UNIONES DE MADERA REFORZADA	17
2.	UNIONES DE MADERA CON CONECTORES METÁLICOS			21
	2.1	INTRO	DDUCCIÓN	21
	2.2	CONE	CTORES METÁLICOS	21
	2.3	MODE	LOS DE COMPORTAMIENTO MECÁNICO DE LA UNIÓN DE MADERA	25
		2.3.1	Ruptura frágil en uniones de madera	27
		2.3.2	Ruptura dúctil en uniones de madera	40
	2.4	DISEÑ	IO DE LA UNIÓN SEGÚN EL EUROCODE 5	44
		2.4.1	Uniones con múltiples conectores metálicos cargados lateralmente	46
		2.4.2	Uniones madera-madera y tablero-madera	47
			2.4.2.1 Uniones en cortante simple madera-madera y tablero-madera 2.4.2.2 Uniones en cortante doble madera-madera y tablero-madera	47 50
		2.4.3	Uniones acero-madera	52
			2.4.3.1 Uniones en cortante simple acero-madera, placas delgadas de acero 2.4.3.2 Uniones en cortante simple acero-madera, placas gruesas de acero	52 53

	2.4.3.3 Uniones en cortante doble acero-madera, placa central de acero	55
	2.4.3.4 Uniones en cortante doble acero-madera, placas laterales delgadas de acero 2.4.3.5 Uniones en cortante doble acero-madera, placas laterales gruesas de acero	57 58
2.4.4	Uniones con clavos	59
	2.4.4.1 Uniones con clavos madera-madera	64
	2.4.4.2 Uniones con clavos tablero-madera	65
	2.4.4.3 Uniones con clavos acero-madera	66
	2.4.4.4 Uniones con clavos cargados axialmente	66
2.4.5	Uniones con grapas	70
2.4.6	Uniones con pernos	71
	2.4.6.1 Uniones con pernos madera-madera	72
	2.4.6.2 Uniones con pernos tablero-madera	74
	2.4.6.3 Uniones con pernos acero-madera	75
	2.4.6.4 Uniones con pernos cargados axialmente	75
2.4.7	Uniones con pasadores	76
2.4.8	Uniones con tornillos	76
	2.4.8.1 Uniones con tornillos cargados axialmente	78
2.4.9	Resumen de las propiedades características de los conectores	81
2.4.10	Uniones bajo cargas combinadas: lateral y axial	82
ESPAC	CIAMIENTOS, DISTANCIAS A LOS BORDES Y A LOS	
	EMOS SEGÚN EL EUROCODE 5	83
2.5.1	Uniones con clavos	85
2.5.2	Uniones con grapas	86
2.5.3	Uniones con pernos	87
2.5.4	Uniones con pasadores	88
2.5.5	Uniones con tornillos	89

2.5

	2.6	CURV	AS CARGA-DESPLAZAMIENTO	91
	2.7	UNIO	NES DE MADERA REFORZADA	96
	2.8	EJEMI	PLOS	103
		2.8.1	Unión de madera en tracción con clavos	103
		2.8.2	Unión de cercha de madera con clavos	110
		2.8.3	Unión de arriostramiento con tornillos	120
		2.8.4	Unión con tornillos cargados axialmente	126
		2.8.5	Unión de madera con pasadores	130
		2.8.6	Unión de madera con pasadores en condiciones de servicio	136
		2.8.7	Unión de madera reforzada con fibra de vidrio	137
		2.8.8	Unión de madera con distancia a la testa cargada reducida	142
		2.8.9	Unión de madera reforzada con distancia a la testa cargada reducida	146
		2.8.10	Unión de madera reforzada con tornillo autoperforante	150
	2.9	CAPAG	CIDAD RESISTENTE DE DISEÑO DE LA UNIÓN	151
REFERENCIAS BIBLIOGRÁFICAS			SLIOGRÁFICAS	154
NOM	NOMENCLATURA			157

LISTA DE FIGURAS

Figura 1.1	Estructura de madera Università degli Studi di Trento	18
Figura 2.1	Unión de madera con conector metálico	22
Figura 2.2	Clavo circular liso	22
Figura 2.3	Perno	23
Figura 2.4	Tornillo con cabeza Phillips	23
Figura 2.5	Tornillos autoperforantes	24
Figura 2.6	Cabezas de tornillos	24
Figura 2.7	Concentraciones de tensión en una unión (evaluación con elementos finitos)	26
Figura 2.8	Modos de ruptura de una unión de madera con conectores metálicos	26
Figura 2.9	Geometría de la unión con un conector metálico	28
Figura 2.10	Geometría de la unión con un conector y condiciones de frontera	31
Figura 2.11	Ángulo de contacto en la unión con un conector metálico	32
Figura 2.12	Tensión perpendicular a lo largo del eje y (Picea roja)	37
Figura 2.13	Curva idealizada de comportamiento en aplastamiento de la madera	40
Figura 2.14	Modo de ruptura I en la pieza 2	41
Figura 2.15	Modo de ruptura I en la pieza 1	41
Figura 2.16	Modo de ruptura II	42
Figura 2.17	Modo de ruptura III	42
Figura 2.18	Ensayo para la determinación de la resistencia al aplastamiento de la madera	43
Figura 2.19	EC5 Modo 8.6a	47
Figura 2.20	EC5 Modo 8.6b	48
Figura 2.21	EC5 Modo 8.6c	48
Figura 2.22	EC5 Modo 8.6d	49
Figura 2.23	EC5 Modo 8.6e	49
Figura 2.24	EC5 Modo 8.6f	50
Figura 2.25	EC5 Modo 8.7g	50
Figura 2.26	EC5 Modo 8.7h	51
Figura 2.27	EC5 Modo 8.7j	51

Figura 2.28	EC5 Modo 8.7k	52
Figura 2.29	EC5 Modo 8.9a	53
Figura 2.30	EC5 Modo 8.9b	53
Figura 2.31	EC5 Modo 8.10c	54
Figura 2.32	EC5 Modo 8.10d	54
Figura 2.33	EC5 Modo 8.10e	55
Figura 2.34	EC5 Modo 8.11f	56
Figura 2.35	EC5 Modo 8.11g	56
Figura 2.36	EC5 Modo 8.11h	56
Figura 2.37	EC5 Modo 8.12j	57
Figura 2.38	EC5 Modo 8.12k	57
Figura 2.39	EC5 Modo 8.13l	58
Figura 2.40	EC5 Modo 8.13m	58
Figura 2.41	Definición de t_1 y t_2 en uniones en cortante simple	60
Figura 2.42	Definición de t_1 y t_2 en uniones en cortante doble	60
Figura 2.43	Clavos traslapados	62
Figura 2.44	Distribución de clavos al tresbolillo	63
Figura 2.45	Clavados perpendicular y oblicuo a las fibras de la pieza	69
Figura 2.46	Dimensiones de la grapa	70
Figura 2.47	Geometría de la unión con grapas	71
Figura 2.48	Resistencia al aplastamiento con un ángulo $lpha$ respecto a la dirección de las fibras	73
Figura 2.49	Distancias a la testa y a los bordes: clavos, grapas, pernos, pasadores y tornillos	84
Figura 2.50	Separaciones: clavos, pernos, pasadores y tornillos	84
Figura 2.51	Separaciones y distancias a la testa y a los bordes: grapas	86
Figura 2.52	Separaciones, distancias a la testa y distancias a los bordes:	
	tornillos cargados axialmente	90
Figura 2.53	Curva idealizada carga-desplazamiento para una unión de madera con pernos	91
Figura 2.54	Uniones en cortante simple madera-madera	94
Figura 2.55	Ruptura por aplastamiento en una unión de madera reforzada con fibra de vidrio	97
Figura 2.56	Ruptura por aplastamiento y cizalladura en una unión de madera reforzada	0.7
Figure 2.57	con bambú	97
Figura 2.57	Placas metálicas dentadas	98
Figura 2.58	Unión de madera reforzada con placa metálica dentada	99
Figura 2.59	Geometría de unión de madera reforzada con tornillo autoperforante	102
Figura 2.60	Ensayo de laboratorio de unión de madera reforzada con tornillo autoperforante	102
Figura 2.61	Unión de madera en tracción con clavos	103
Figura 2.62	Espaciamientos, distancias a los bordes y a los extremos en unión de	104
E: 0.60	madera en tracción con clavos	104
Figura 2.63	Unión de cercha de madera con clavos	110
Figura 2.64	Espaciamientos, distancias a los bordes y a los extremos en unión	444
	de cercha de madera con clavos	111

Figura 2.65	Espaciamientos, distancias a los bordes y a los extremos en el	
_	miembro 1 en unión de cercha de madera con clavos	111
Figura 2.66	Espaciamiento, distancias a los bordes y a los extremos en el	
_	miembro 2 en unión de cercha de madera con clavos	112
Figura 2.67	Unión de arriostramiento con tornillos	120
Figura 2.68	Espaciamientos, distancias a los bordes y a los extremos en unión	
_	de arriostramiento con tornillos	121
Figura 2.69	Unión con tornillos cargados axialmente	127
Figura 2.70	Unión de madera con pasadores	130
Figura 2.71	Espaciamientos, distancias a los bordes y a los extremos en unión de	
_	madera con pasadores	132
Figura 2.72	Unión de madera reforzada	137
Figura 2.73	Unión de madera con distancia a la testa cargada reducida	142
Figura 2.74	Geometría de unión de madera reforzada con tornillo autoperforante	
-	en el miembro central	150

LISTA DE TABLAS

Tabla 2.1	Constantes elásticas de la especie Picea roja (Picea rubens)	36
Tabla 2.2	Concentración de tensión en el borde de la perforación (Picea roja)	37
Tabla 2.3	Constantes elásticas de diferentes especies de madera	38
Tabla 2.4	Tensiones máximas pronosticadas para diferentes especies de madera	
	(valores normalizados)	39
Tabla 2.5	Valores de k_{ef}	63
Tabla 2.6	Resumen de propiedades características de los conectores	81
Tabla 2.7	Separaciones y distancias a la testa y a los bordes: clavos	85
Tabla 2.8	Separaciones y distancias a la testa y a los bordes: grapas	87
Tabla 2.9	Separaciones y distancias a la testa y a los bordes: pernos	88
Tabla 2.10	Separaciones y distancias a la testa y a los bordes: pasadores	89
Tabla 2.11	Separaciones, distancias a la testa y distancias a los bordes: tornillos	
	cargados axialmente	91
Tabla 2.12	Módulo instantáneo de deslizamiento	92
Tabla 2.13	Separaciones y distancias a la testa y a los bordes, ejemplo 2.8.1	104
Tabla 2.14	Separaciones y distancias a la testa y a los bordes, ejemplo 2.8.2, miembro 1	113
Tabla 2.15	Separaciones y distancias a la testa y a los bordes, ejemplo 2.8.2, miembro 2	114
Tabla 2.16	Separaciones y distancias a la testa y a los bordes, ejemplo 2.8.2, tablero	
	contrachapado en el miembro 1	114
Tabla 2.17	Separaciones y distancias a los bordes tornillos cargados axialmente, ejemplo 2.8.3	121
Tabla 2.18	Separaciones y distancias a los bordes tornillos cargados axialmente, ejemplo 2.8.4	127
Tabla 2.19	Separaciones y distancias a la testa y a los bordes, ejemplo 2.8.5, miembro central	131
Tabla 2.20	Separaciones y distancias a la testa y a los bordes, ejemplo 2.8.5, miembro lateral	131
Tabla 2.21	Propiedades mecánicas de la madera, de la fibra de vidrio y de la madera	
	reforzada ejemplo 2.8.7	138
Tabla 2.22	Propiedades mecánicas de la madera ejemplo 2.8.8	143

Tabla 2.23	Propiedades mecánicas de la madera, de la fibra de vidrio y de la madera	
	reforzada ejemplo 2.8.9, miembro lateral	146
Tabla 2.24	Propiedades mecánicas de la madera, de la fibra de vidrio y de la madera	
	reforzada ejemplo 2.8.9, miembro central	147
Tabla 2.25	Clases de duración de la carga	152
Tabla 2.26	k_{mod} según la duración de la carga	153

PREFACIO

En la construcción de edificios y puentes se utiliza intensivamente la madera. Por su bajo peso y alta resistencia la madera ofrece beneficios técnicos y económicos frente a otros materiales estructurales. El empleo de la madera como elemento estructural puede ser maximizado si se logra mejorar su comportamiento mecánico.

El comportamiento mecánico de la unión es uno de los puntos más importantes a tener en cuenta en el diseño de una estructura. Las uniones son, en general, los puntos débiles de la estructura de madera. El diseño de la conexión de madera es entonces un tema primordial.

Este libro se ocupa de los fundamentos del diseño de uniones de madera y de madera reforzada. Se estudia el comportamiento estructural de la conexión y se explican y resumen posteriormente las cláusulas pertinentes de las especificaciones. El libro recopila, examina la teoría y presenta diversos ejemplos numéricos de temas dictados en los cursos de pregrado "Materiales IV: madera y materiales compuestos", "Patología II: diagnóstico y rehabilitación de estructuras" y en el curso de posgrado "Madera" de la Especialización en Patología de la Edificación. Todos estos cursos hacen parte de los programas de la Escuela de Construcción de la Facultad de Arquitectura de la Universidad Nacional de Colombia, Sede Medellín. El uso de este texto requiere conocimientos básicos previos de estática y de resistencia de materiales. El libro es un texto guía para estudiantes de construcción, ingeniería civil, arquitectura, ingeniería forestal e ingeniería agrícola y para diseñadores y constructores de estructuras de madera. El objetivo primordial de este texto es presentar los pasos requeridos para diseñar adecuadamente una conexión de madera o de madera reforzada. En la medida de lo posible, se enfatiza el cálculo práctico de las conexiones con diversos ejemplos numéricos.

Inicialmente, se muestra entonces en el capítulo 1 y en las secciones 2.1 a 2.3, dada la importancia práctica del problema, un modelo analítico para determinar las concentraciones de tensión en uniones con un conector metálico. Este modelo teórico puede usarse en las uniones de madera y de madera reforzada con conectores me-

tálicos. En este modelo se recopilan investigaciones realizadas por el autor y se explican las bases teóricas que definen el comportamiento mecánico de la unión.

Posteriormente, en las secciones 2.4 y 2.5 se presenta el método de diseño de uniones con un comportamiento dúctil. Se ha elegido al Eurocode 5 pues representa, en nuestra opinión, un ejemplo de norma moderna, funcional y universal. Las especificaciones de diseño en los códigos de estructuras de madera (Eurocode 5, NDS, NSR-10) son similares en esencia. Después de aprender a diseñar con una especificación particular, el diseñador podrá adaptar con facilidad su conocimiento básico a una especificación diferente. Además, el Eurocode 5 colma un vacío en el diseño de estructuras de madera en Colombia ya que el Reglamento Colombiano de Construcción Sismo Resistente NSR-10 infortunadamente no entrega reglas de diseño para:

- Las conexiones con grapas
- Las conexiones con pasadores
- Las conexiones con tornillos
- Las conexiones tablero-madera
- Las conexiones acero-madera
- Las conexiones con conectores metálicos cargados axialmente

La elaboración de un reglamento específico colombiano para el diseño de conexiones de madera es entonces una tarea pendiente. Sin embargo, el NSR-10 en su capítulo G permite la utilización de otras normas, las que adaptadas de alguna manera a nuestro medio proveen de una guía para diseñar adecuadamente las conexiones.

Se presenta también en este libro, en la sección 2.6, un análisis de las curvas carga-desplazamiento y de los estados límites de servicio en las conexiones de madera.

Se muestran, en la sección 2.7, las conexiones reforzadas con tornillos autoperforantes, las conexiones reforzadas con fibra de carbono y vidrio y las conexiones reforzadas con placas metálicas dentadas. El refuerzo aumenta la ductilidad y la capacidad de disipación de energía de la unión.

Finalmente, en las secciones 2.8 y 2.9 se incluyen varios problemas de ejemplo que se presentan con detalles más completos de los que requiere un diseñador sin experiencia: ejemplos de diseño de la conexión de madera y de la conexión de madera reforzada. Se alienta, por lo tanto, el estudio cuidadoso de los ejemplos de diseño del texto.